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Background. Annual vaccination is the primary means for preventing influenza. However, great interindividual

variability exists in vaccine responses, the cellular events that take place in vivo after vaccination are poorly

understood, and appropriate biomarkers for vaccine responsiveness have not been developed.

Methods. We immunized a cohort of healthy male adults with a licensed trivalent influenza vaccine and

performed a timed assessment of global gene expression before and after vaccination. We analyzed the relationship

between gene expression patterns and the humoral immune response to vaccination.

Results. Marked up regulation of expression of genes involved in interferon signaling, positive IL-6 regulation,

and antigen processing and presentation, were detected within 24 hours of immunization. The late vaccine response

showed a transcriptional pattern suggestive of increased protein biosynthesis and cellular proliferation. Integrative

analyses revealed a 494-gene expression signature—including STAT1, CD74, and E2F2—which strongly correlates

with the magnitude of the antibody response. High vaccine responder status correlates with increased early

expression of interferon signaling and antigen processing and presentation genes.

Conclusions. The results highlight the role of a systems biology approach in understanding the molecular

events that take place in vivo after influenza vaccination and in the development of better predictors of vaccine

responsiveness.

Influenza viruses circulate worldwide, causing an esti-

mated 250,000–500,000 deaths each year [1]. In the

United States alone, yearly epidemics affect an estimated

2–5% of the population [2] and are responsible for an

average of 200,000 hospitalizations [3] and 36,000

deaths [4]. Since 1977, influenza A (H3N2), influenza A

(H1N1), and influenza B viruses have been responsible

for the majority of documented infections. Trivalent

inactivated vaccines, updated yearly based on the cur-

rently circulating strains, are the primary tools used for

preventing influenza [5, 6]. Recent systematic reviews

have highlighted the need for better vaccines [7–9]. It is

clear that the protection offered by the currently avail-

able vaccines is incomplete, and that large in-

terindividual variation exists [10]. Furthermore, the

cellular events that take place in vivo after vaccination

and the correlates of vaccine-induced protection are

incompletely understood. Genome-wide transcriptional

analysis has recently been introduced as a useful tool to

study the mechanisms of viral infection [11, 12] and

host responses to vaccination [13–15]. However, an

integrated, systematic evaluation of the transcriptional

response to influenza vaccination using multiple time

points and incorporating antibody response data has

not been performed to date.

We immunized a cohort of 119 healthy male adults,

ages 18–40, with a licensed trivalent influenza vaccine
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and assessed the genome-wide gene expression patterns in pe-

ripheral blood cells before and on days 1, 3, and 14 after vac-

cination. Antibody titers were measured before and on days 14

and 28 after vaccination. We then studied the correlation be-

tween changes in gene expression and the antibody response

following influenza vaccination.

METHODS

Study Subjects
Healthy volunteers ages 18–40 years were enrolled (n 5 119).

Given the systematic differences in gene expression between sexes

and among ethnic groups [16, 17], this initial cohort was limited

to male individuals of self-reported Caucasian ancestry. In-

dividuals who were known to have received an influenza vaccine

in the previous three years were not included. Enrollment, vac-

cination, and sample collection were conducted at a university

campus. The protocol was approved by the institutional review

boards of all participating institutions. Informed consent was

obtained from each subject prior to enrollment.

Vaccine
Participants were immunized on day 0 with the 2008–2009

trivalent influenza vaccine [A/Brisbane/59/2007(H1N1), A/

Brisbane/10/2007(H3N2), B/Florida/4/2006; Sanofi-Pasteur].

RNA Samples
Peripheral blood samples for RNA purification (n 5 461) were

obtained before and on days 1, 3, and 14 after immunization. To

minimize changes in gene expression induced by sample

handling and processing, whole blood samples (2.5 mL) were

collected in PAXgene RNA stabilization tubes (QIAGEN) and

frozen at 280�C. RNA purification was performed using the

PAXgene Blood RNA system (QIAGEN). Spectrophotometry

(NanoDrop-1000 Spectrophotometer, Thermo Fisher Scientific)

and microfluidic electrophoresis (Experion Automated Electro-

phoresis System, Bio-Rad Laboratories) were used for quality

control.

Microarray Analysis
In vitro transcription was performed using Ambion Illumina

TotalPrep RNA Amplification Kits (Applied Biosystems/

Ambion). cRNA was hybridized onto Illumina Human HT-

12v3 Expression BeadChips (Illumina), following the manu-

facturer’s protocol. All samples for each individual were

processed simultaneously. The arrays included over 25,000

well-characterized genes (including splice variants) and

nonannotated gene candidates. Standard quality control

thresholds were applied after preprocessing of signal intensity

data, and failed microarrays were removed [18, 19]. We also

excluded arrays from individuals for which data was not

available at all time points. The final set of 368 arrays repre-

sented 92 individuals at four time points. We required

a detection P value of ,.05 in at least 65% of the samples for

a transcript to be considered detected. There were 12,795

detected transcripts in our data. To identify genes with levels

of expression that changed after vaccination, we used the

expression values of each transcript at the four time points in

a linear mixed-effects analysis of variance (ANOVA) model,

using day as a fixed effect and person as a random effect.

Serum Samples and Antibody Titer Measurements
Whole blood (10 mL) was collected in Vacutainer Serum Sepa-

rator Tubes (Beckton-Dickinson). Serum was separated by cen-

trifugation prior to storage at 220�C. Hemagglutination

inhibition (HAI) tests were performed as previously described

[20], except for a starting serum sample dilution of 1:4 and the

use of turkey red blood cells (RBCs). HAI test antigens were

allantoic fluid harvests from infected embryonated hen’s eggs

(whole virus antigens). Neutralizing antibody tests were per-

formed as previously described [21] except that hamster serum

was not included. Test strains were the same as those used in the

vaccine.

Data Processing and Statistical Analysis
Initial quality control of the microarray signal intensity data was

performed using the lumi Bioconductor package [18] in the R

programming language [22]. The same software was used for

variance stabilization transformation [19] and robust spline

normalization of the expression data. Regression and ANOVA

were carried out in R.

Pathway Enrichment and Content Analysis
The Gene Ontology (GO) vocabulary was obtained from the GO

Web site (http://www.geneontology.org, 2009 build). Sequence

information for reporters in the microarrays was converted to

nuID annotation [18]. The corresponding Entrez identifiers

were mapped to the GO data structure. Using our own ontology

analysis system, OntologyTraverser [23], we tabulated the genes

annotated at or below each GO node for the entire array. We

used a hypergeometric sampling model to examine the statistical

representation of each GO node for genes in our gene sets. To

compare sets, we took differences between the standardized

scores determined for each gene set. Gene lists were simulta-

neously analyzed using Ingenuity Pathway Analysis (IPA) soft-

ware (Ingenuity Systems) and DAVIDOntology [24, 25] (http://

www.david.abcc.ncifcrf.gov) to confirm significantly associated

pathways.

Calculation of the Titer Response Index
We performed regression analyses for each vaccine component

in each of the two antibody titer measurements (Figure S1,

supplementary data). Because the results for the two antibody

titer data sets (HAI and neutralization) were strongly correlated,

we combined the information from the two assays for down-

stream TRI calculations. We related the change in titer between
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pre- and postvaccination measurements (response variable) to

the prevaccination titer (explanatory variable) using a simple

linear model with an additional term to account for spurious

variation attributable to recruitment dates (Figure S1, supple-

mentary data). We next determined the residuals from the above

linear regressions and used them as the input values for the

individual response scores. The residuals are the distance of each

individual point from the regression fit (Figure S2, supple-

mentary data). These residuals reflect how the antibody titer rise

of an individual deviates from the expected rise given the typical

response of individuals within the cohort with a given pre-

vaccination titer level. To increase the accuracy of combining

the titer scores across vaccine components, we standardized the

residuals by dividing by the residual standard deviation for each

component; we then computed four outcome scores within

each titer response measurement for each individual. These

four summaries are the mean standardized residual across vac-

cine components, median standardized residual across vaccine

components, mean rank (across all individuals, across vaccine

components), and median rank. These scores were correlated

(Figure S2, supplementary data). The scores were then stan-

dardized again (mean 5 0, variance 5 1 across all individuals),

and scores within each individual were averaged to obtain the

titer response index (TRI). The TRI, therefore, is a summary of

the aggregate residuals of all antigen components in the vaccine

with both HAI and neutralization antibody titers incorporated.

The TRI is designed specifically for carrying out the correlation

analyses between gene expression and antibody response.

Correlation of the Gene Expression and Antibody Titer Data
In this regression model, we treated the expression data for all

detected transcripts as the outcome, and the day and TRI as

explanatory variables.We computed false discovery rate (FDR) q

values (Benjamini-Hochberg method) for the partial F statistics

of titer score against expression. We used an FDR cutoff of 0.05

and a TRI slope absolute magnitude cutoff of 0.1.

Cross-validation
We sequentially excluded the values for each individual and used

the expression data and titer scores on the remaining individuals

to determine the correlation between the TRI and the expression

values. We then attempted to predict the TRI value of the in-

dividual that was excluded from the model selection and fitting

process using the expression values for the target individual and

the model fit from the rest of the cohort. To make the process

more robust and to balance the effect of each gene, we stan-

dardized the expression data to have a mean of zero and variance

of 1 among the set of genes and individuals considered. We used

a subset of genes with known functions in antigen presentation,

interferon response, and peroxidase activity processes (Table 1).

We identified day 1 and day 3 after vaccination as the days

with the strongest correlation. We then fit the TRI to ex-

pression relation within each of these days. The cross-

validation prediction for each individual was determined as

the maximum absolute prediction value obtained from either

day 1 or day 3.

RESULTS

Maximum Changes in Gene Expression Occur in the Initial 24
Hours After Vaccination
We identified expression changes in 4740 transcripts (Dataset 1)

after imposing a FDR cutoff of 0.01 on the P value for the day

effect. Due to the assay’s design, some reporters mapped to

different regions or alternatively spliced transcripts of the same

gene. The reporters corresponding to differentially expressed

transcripts in our data set uniquely mapped to 3854 RefSeq-

annotated genes and 242 nonannotated gene candidates. The

maximum expression change occurred on day 1, while day 14 had

the greatest number of genes with maximum expression values.

Interindividual differences in expression are reflected in the

magnitude of person-effects in the ANOVA model (Dataset 1).

Table 1. Subset of Transcripts Used for Prediction of the TRI

lumi ID Accession No. Gene Upregulated in

ix1KUCgkUiUOgfjpXA NM_007315 STAT1 High responders

0tbjDbteANdkRHp66I NM_006084 IRF9 High responders

Ki3QtbOwNI3Vd0VdUU NM_001080547 SPI1 High responders

xVb14TRJJdQRCnUIXI NM_001025158 CD74 High responders

lBLUXe7cU4VX10R4Xs NM_005516 HLA-E High responders

fcZTqE3D0iggrU7f6o NM_006573 TNFSF13B High responders

Qa6_OmX0CK4J7aHECo NM_005809 PRDX2 Low responders

KWIca7nvIK9635HCK0 NM_006793 PRDX3 Low responders

TWl6.Zetu384kU7CXU NM_004091 E2F2 Low responders

cw3oT2KD6We0efvv5k NM_000314 PTEN Low responders

r7J67r56D73z6X5PHk NM_002211 ITGB1 Low responders

Gene Expression and Humoral Immune Response d JID 2011:203 (1 April) d 923



The top 1% differentially expressed genes included interferon-

inducible genes (eg, IFIT1, MX1, and IRF9), the signal

transducer and activator of transcription (STAT) gene family,

genes with ribosomal functions (eg, RPL7, RGS18, and RPS27),

and genes with unclear functions (eg, WARS and the family of

guanylate-binding proteins).

Three Distinct Patterns of Gene Expression Are Observed After
Influenza Vaccination
A visual summary of the dynamic changes in the transcriptional

response to vaccination over time shows three major gene ex-

pression patterns: downregulation, early upregulation, and late

upregulation (Figure 1A). Genes with late upregulation of ex-

pression were not significantly different between the last two

time points. We evaluated the gene content of each of the above

patterns of expression using three methodologies: association of

Gene Ontology (GO) terms (http://www.geneontology.org)

using our own R software package [16], the DAVID bio-

informatics database [17, 18], and Ingenuity Pathway Analysis

software. These results are summarized in Figure 1B, and

complete gene lists are provided in Datasets 2–8. As expected,

the early phase of transcriptional activation was marked by

upregulation of genes involved in multiple immune processes.

The data suggest early expression of genes whose products act on

host viral sensing via Toll-like receptors TLR7 and TLR8.

Overall, there were significantly increased transcript levels for

genes participating in antiviral defense response (eg,

GO:0009615), cellular activation (eg, GO:0001775), and cellular

differentiation (eg, GO:0045582). Activation of antigen pro-

cessing and presentation is implied by the increased expression

of major histocompatibility complex (MHC) Class I genes (eg,

GO:002474). Associations were most significant for the in-

terferon response pathway (GO:0005062, GO:0034341, and

GO:0034340) when compared with other cytokines. Of the

signal transduction pathways, the Janus kinase/signal trans-

ducers and activators of transcription (JAK/STAT) (GO:007259)

and nuclear factor kappa beta (NFjb) (GO:0043122) axes were
particularly enriched. In contrast, the late vaccine response was

characterized by increased detection of transcripts for genes

involved in intracellular processes suggestive of active cellular

Figure 1. The human transcriptional response to trivalent influenza vaccination shows three distinct patterns of gene expression. (A) Heatmap
illustrating the patterns of expression for all differentially expressed genes. Yellow indicates a higher value. Three distinct patterns of expression are
evident: early upregulation, late upregulation and downregulation. (B) Proportions of significant and nonsignificant Gene Ontology (GO) categories for
each of the three expression patterns. (C) Selection of the most important GO terms for each expression pattern. Higher z scores indicate that a GO term is
more likely to be enriched in a given set of differentially expressed genes.
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proliferation, including macromolecule biosynthesis (eg,

GO:0009059), cellular protein metabolism (eg, GO:0044267),

RNA metabolic processing (eg, GO:0016070), and regulation of

antiapoptosis (GO:0045767).

A Classification Model for Antibody Responsiveness
Antibody titers were measured by both hemagglutination in-

hibition (HAI) and neutralization assays. The titer results from

these assays were strongly correlated, and the titers generally

plateaued after day 14. We constructed a classification model for

vaccine responsiveness (the Titer Response Index, TRI) based on

the aggregate titer changes for the three antibodies. The TRI

robustly aggregates both the individual’s response across the

vaccine components and the individual’s response relative to the

rest of the cohort. Interestingly, the distribution of the TRI scores

is trimodal, facilitating an unbiased classification of individuals

as high, intermediate, and low vaccine responders (Figure 2A),

depending on where the individual’s TRI falls under this dis-

tribution. The TRI and rise in HAI titer for the 92 individuals

show a significant positive relationship (r2 5 0.4585).

A Distinct Gene Expression Signature Correlates with the
Magnitude of the Antibody Response to Influenza Vaccination
To assess whether specific patterns of gene expression correlated

with the magnitude of the antibody response, we studied the

relationship between gene expression and the TRI in all subjects.

We found that the abundance level of 494 transcripts signifi-

cantly correlated with the TRI (Dataset 8). These mapped to 481

Figure 2. Early patterns of gene expression correlate with responsiveness to trivalent influenza vaccine. (A) Probability density estimate of the titer
response index (TRI) in our cohort. A trimodal distribution for the vaccine response is observed. The hash marks below the curve are the TRI values for
each individual, and the colors correspond to low, intermediate, and high responders. (B) STAT1 and E2F2 expression in the three responder groups at
each time point. STAT1 expression increases after vaccination, most prominently on day 1 and in the high-responder group. E2F2 expression is
downregulated after vaccination, most prominently on day 3 and with greater downregulation in the high-responder group. (C) Heatmap of the expression
signature of vaccine responsiveness in the top 10 (left) and bottom 10 (right) responders. The expression values for each gene were standardized at each
time point, and the day 1 and day 3 values were averaged. Yellow indicates a higher value. Each column represents an individual. The top row illustrates
the TRI for each individual. The difference between STAT1 and E2F2 expression alone can differentiate individuals at the two extremes of the response
spectrum, as illustrated in the second row. The bottom rows display the expression patterns for the 494 genes in the gene expression signature. (D) Cross-
validation prediction data, illustrating how expression values can be used to predict the TRI.

Gene Expression and Humoral Immune Response d JID 2011:203 (1 April) d 925



known genes and 13 nonannotated gene candidates. Two op-

posing expression trends influenced the magnitude of the anti-

body response, and the maximum effects were observed at

specific time points as illustrated by the genes STAT1 and E2F2

in Figure 2B. A visual heatmap display of the entire gene ex-

pression signature in those individuals with the 10 highest and

10 lowest TRI scores is given in Figure 2C (bottom). Re-

markably, the difference between STAT1 and E2F2 expression

alone generates a gradient that corresponds clearly to the TRI at

the two extremes of the response spectrum (Figure 2C, top).

We then performed a cross-validated linear prediction pro-

cedure utilizing the expression values of a subset of differentially

expressed genes (Table 1) to predict the antibody response

scores of those individuals with the highest and lowest antibody

responses as depicted in Figure 2C. We show that the residual

expression values on days 1 and 3 are predictive of the observed

TRI for each individual and, more importantly, that the cross-

validated predicted TRI recategorized the highest and lowest

responders into the appropriate groups (Figure 2D). The pre-

diction performed particularly well in the individuals who

mounted the least immune response.

Early Upregulation of Interferon Response and Antigen
Presentation Pathways is Associated With a Higher Antibody
Response
Content analysis of the genes that were upregulated in the high-

responder group showed enrichment of GO categories involved

in cellular immune responses, most notably the interferon re-

sponse and antigen presentation pathways (Figure 3A and Da-

tasets 9, 10). Genes within the interferon response pathway were

highly upregulated in the high-responder group (Figure 3B). A

functional interaction network for this subset of genes is pre-

sented in Figure 3C. In contrast, the majority of upregulated

Figure 3. Interferon signaling and antigen presentation genes are preferentially upregulated in individuals with high vaccine responsiveness. (A) Top
enriched pathways in the high responder group. The negative log P value, along the x-axis, increases as a pathway is more significantly associated. The
ratio indicates the proportion of upregulated genes relative to all the genes present in a pathway. (B) Genes that act in the interferon pathway and which
are preferentially upregulated in the high vaccine responders are shown in red. (C) Top functional network for genes that are preferentially upregulated in
the high responder group, including genes that interact directly (solid lines) and indirectly (broken lines). Functionally, the network corresponds to antigen
presentation, cellular growth and proliferation, and hematological system development and functions. Shades of red are used to display the level of
expression for each gene in the high-responder relative to the low-responder groups.
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genes and enriched functional pathways in low responders were

not specifically related to cell-mediated immune responses

(Figure S3 and Datasets 11, 12).

DISCUSSION

This study illustrates how a systems biology approach can be

applied in a clinical scenario to understand the complex mo-

lecular events that take place in vivo after trivalent influenza

vaccination, and to develop better molecular biomarkers for

vaccine responsiveness. The implications of the findings,

therefore, extend from vaccine biology to vaccine development

and clinical vaccinology.

The data support a model in which genes involved in in-

terferon signaling and antigen presentation pathways are

strongly upregulated in the initial 24 hours after vaccination,

and the expression pattern of early-activation genes correlates

strongly with the magnitude of the antibody response mea-

sured 14 and 28 days after vaccination. The simultaneous

assessment of transcript abundance for over 25,000 genes and

gene candidates offers an unbiased, genome-wide view of the

transcriptional events that take place after vaccination. By

performing this analysis before and at three time points after

vaccination, we have gained a deeper understanding of these

events and their timing than had been possible before. The

three patterns of coexpression that became evident from our

analysis are quite distinct and suggest a previously un-

described biphasic transcriptional response to vaccination.

The observation of maximum expression changes in the initial

24 hours after vaccination and the correlation between early

expression and the magnitude of the antibody response are

important new contributions to the understanding of the

vaccination response sequence. Content analysis suggests

a central role in the early vaccine response for genes whose

products are involved in viral sensing via TLR7 and TLR8,

MHC Class I presentation, interferon signaling, IL-6, and the

NFjb and JAK/STAT signaling pathways. These genes are also

known to be activated in innate cells (ie, macrophages and

dendritic cells) during viral infections [26]. Days 3 and 14

show similar patterns of expression, more suggestive of in-

creased RNA processing and protein synthesis. For inactivated

influenza vaccines, therefore, these findings suggest that the

first 24 hours after vaccination are of great biological im-

portance.

As the field of clinical vaccinology moves into an era of

high-throughput experimental data generation and systems-

level biology, it is imperative to give serious statistical con-

sideration to the limitations of current methods of assessment

of the magnitude of immune responses. With trivalent in-

fluenza vaccines, which in the case of influenza are of high

clinical importance, three factors are known to complicate the

quantitative analysis of antibody titer data in clinical studies.

First, by young adulthood, most individuals have been ex-

posed to influenza antigens through infection or prior vac-

cination. Indeed, despite our exclusion of individuals who had

been vaccinated over the previous three years, most of the

study participants had measurable prevaccination antibody

titers. Second, individuals with higher prevaccination titers

have smaller differences between pre- and postvaccination

titers. Accordingly, we observed in our data an approximately

linear inverse correlation between prevaccination titers and

the rise in titer. For this reason, a simple calculation of the

titer change (the titer delta) is inadequate as a way to classify

the vaccine responsiveness of individuals. Finally, influenza

vaccination currently involves the concomitant administra-

tion of three antigens and, while the immune response takes

place simultaneously and separations are somewhat artificial,

there is inter- and intraindividual variation in the response to

each. These observations are depicted in Figure S2. We,

therefore, developed the TRI (Titer Response Index) as

a classification method for these data. The TRI accounts for an

individual’s prevaccination antibody titers, their titers for the

three antigens, and the magnitude of their response relative to

other individuals in the population. The observed trimodal

distribution clearly deviates from what would be expected by

chance alone, permitting a statistically significant classifica-

tion of trivalent influenza vaccine recipients on the basis of

responsiveness.

Compared to previous studies, our study has a larger

sample size, which provides sufficient power to detect sig-

nificant correlations between transcript abundance and re-

sponsiveness. By assessing the relationship between the early

patterns of gene expression and the magnitude of the antibody

response, we have discovered 494 transcriptional biomarkers

that strongly correlate with the humoral immune response to

trivalent influenza vaccines. Our content and network analy-

ses of this predictive gene expression signature again point

clearly toward the interferon and antigen presentation path-

ways. Genes in these pathways, as well as other genes with

levels of expression that are clearly different between the

highest and lowest vaccine responders in our study (CD74,

HLA-E, E2F2, and PTEN) are potential targets for functional

studies linking the early molecular events that follow vacci-

nation with the subsequent adaptive immune response. Ge-

nomic regions that control expression of these genes could be

important for studies seeking to explain interindividual var-

iation in vaccine responsiveness at the DNA level.

A full predictive analysis using the 92 individuals for which

expression data was analyzed would be ideal for validating these

correlated transcripts. However, our power to perform cross-

validation on individuals in the intermediate response range is

affected by the expression differences that result from in-

terindividual variation. Fortunately, these subjects appear to

develop protective immune responses after vaccination and are
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less crucial to the interpretation of the data. Since individuals

who did not mount a response to the trivalent influenza vaccine

are the most clinically interesting and, given that the vaccine

response of the entire cohort follows a trimodal distribution, we

sampled from the extreme ends of this distribution in order to

maximize the power of the cross-validation analyses. Specific

patterns of gene expression characterize individuals at the two

extremes of the antibody response spectrum, and cross-valida-

tion illustrates their predictive value. The fact that a simple

gradient of STAT1 to E2F2 expression can predict an in-

dividual’s response status at the extremes of the spectrum, and

the fact that cross-validation could be performed using a small

subset of representative genes, underscore the magnitude of

the differences and suggest that simplified predictors based on

early gene expression patterns are possible. Further validation

of our gene expression-based prediction model in another

and preferably larger group of volunteers is warranted. Ideally,

this would include individuals of both sexes and different

ethnicities.

Early molecular predictors of vaccine responsiveness can be

useful in the development and comparison of new vaccines and

adjuvants. They can also play a role in studies of vaccine re-

sponse among different subgroups (children, the elderly, or

immunocompromised patients, for example) and open the door

for studies of individualized vaccine regimens. Past and recent

influenza pandemics highlight the need for studies geared to-

ward rapid implementation of clinical and translational research

findings.

DATASETS

The following datasets will be available for download from our

laboratory’sWeb site (www.bcm.edu/cnrc/faculty/cnrcbelmont):

Dataset 1. List of Differentially Expressed Transcripts.

Dataset 2. Gene Ontology Results for Downregulated Genes.

Dataset 3. Ingenuity Pathway Analysis Results for Down-

regulated Genes.

Dataset 4. Gene Ontology (GO) Results for Early Upregulated

Genes.

Dataset 5. Ingenuity Pathway Analysis Results for Early Up-

regulated Genes.

Dataset 6. Gene Ontology (GO) Results for Early Upregulated

Genes.

Dataset 7. Ingenuity Pathway Analysis Results for Late Up-

regulated Genes.

Dataset 8. Gene Expression Signature for Influenza Vaccine

Responses.

Dataset 9. DAVID Gene Ontology (GO) Results for

Highly Expressed Genes in High Responders.

Dataset 10. Ingenuity Pathway Analysis Results for Highly

Expressed Genes in High Responders.

Dataset 11. DAVID Gene Ontology (GO) Results for Highly

Expressed Genes in Low Responders.

Dataset 12. Ingenuity Pathway Analysis Results for Highly

Expressed Genes in Low Responders.

Supplementary Data

Supplementary data are available at http://jid.oxfordjournals.org online.
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